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Abstract 
 
 
 

Abstraction  is often described as the key to effective software design, and 
declarative approaches to software design are often promoted as the 
most clear and succinct.  Unfortunately, language and systems designers 
often get caught up in the their own little worlds, inventing abstractions 
and declarative techniques that are justified based on intrinsic values 
known only to language and systems design specialists.  What the 
designers have forgotten about is the real world.  What we should be 
striving for are declarative abstractions of real world phenomena.  In t his 
paper several examples of such abstractions are described in brief. 



Introduction 
 
Modern programming languages are full of promising abstraction techniques: 
functions and procedures, objects and classes, modules and namespaces, 
functors and monads, higher-order functions and types, abstract and algebraic 
data types, and so on.  With them the task of writing complex programs is 
simplified, modularity is enhanced, and code reuse is facilitated.  Indeed, 
abstraction techniques are the closest thing language designers have to a “silver 
bullet” for solving modern software development problems. 
 
Unfortunately, most of these abstraction techniques are motivated from an 
inward-looking perspective, or from mathematical foundations that are 
allegedly self-evident.  Inward-looking abstractions are improvements to previous 
abstraction techniques, and are designed with the assumption that the previous 
techniques were on the right track.  Ones based on mathematical principles, or 
that model mathematical structures, are designed with the assumption that 
mathematics is a suitable basis for programming.  In fact both of these 
assumptions may be true, at least to some extent, but are these the only 
foundations on which to design new abstractions? 
 
In this paper I argue that we should be looking to the real world for guidance in 
designing new abstractions.  Indeed, one could argue that the success of 
object-oriented programming stems from the fact that objects are motivated, to 
a great extent, by the real-world notion of an object.  I argue that there are also 
other natural real-world phenomena that are not only intuitive, but are also 
powerful, useful, and quite effective in designing modern software systems. 
 
 
Time 
 
Perhaps one of the simplest and most obvious aspects of the real world is that it is 
continuously changing over time.  It is natural for us to speak not only about what 
is happening at the present, but also in terms of the future and the past.  Yet 
continuous time as a truly first-class concept is conspicuously absent from most 
programming languages, which instead tend to focus on discrete concepts that 
at best depend implicitly on time.  Many applications have critical components 
that are best described as time-varying behaviors.  Examples include animation 
and multimedia, signal processing, robotics, control systems, computer vision, 
and graphical user interfaces.  These are some of the most challenging software 
development domains, and could benefit greatly from a suitable abstraction of 
continuous time. 
 
To see this concretely, suppose that time is a value that represents the passage 
of time in seconds.  The value sin(pi*time) then denotes a continuous sinusoidal 
signal with a period of two seconds.  In this way complex time-varying behaviors 
could be defined easily and succinctly.  Furthermore, with first-class time-varying 
behaviors, one could perform various time-based computations, such as 



integration and differentiation.  For example, the position of a body with mass m 
being accelerated by a force f could be defined as: 
 

x = x0 + integral v 
v = v0 + integral (f/m) 

 
where x0 and v0 are the initial position and velocity, respectively.  These are 
exactly the equations that one would write to describe the physical system.  It is 
easy to imagine how similar concepts could be used to describe animations, to 
control robots, or in general, to realize control systems typically described as 
recursive integral / differential equations. 
 
Furthermore, time transformations could be performed with simple expressions 
such as timetransform(f,b), which transforms b in time according to the function f.  
Formally, if b(t) is b’s behavior at time t, then b(f(t)) is the behavior of 
timetransform(f,b) at time t. 
 
 
Interactivity 
 
Interaction in the real world is pervasive.  People interact with all sorts of objects, 
including computers, and objects interact with each other.  This interactivity (a 
word that I prefer over reactivity, which conjures an image of one-directional 
interaction) is qualitatively different from continuous behavior, and is 
characterized by the occurrence of discrete events.  These events can be 
viewed as the discontinuities that link together otherwise continuous behaviors.  
A ball falls gracefully under the influence of gravity, only to be abruptly changed 
through interaction with the floor.  A heating system behaves smoothly when on, 
heat dissipates smoothly when the system is off, and the hysteresis of a 
thermostat is what links them. 
 
A programming language should have rich abstractions to describe interactivity, 
but most are limited to very sequential process- or event-based reactivity that 
lacks clarity and succinctness.  What is needed is a more declarative  approach 
to interactivity.  For example, using the previous examples, a bouncing ball can 
be described declaratively as: 
 

y = y0 + integral v   
v = v0 + integral g  `until`  (y==0)  è (-v) 
 

(Interestingly, this is an area where programming language design could have 
an impact on methods for describing physical systems.  In most physics 
textbooks, for example, interactions such as these are at best described 
informally and piecemeal, with no closed-form equation to describe the entire 
behavior.) 
 



In the above example, (y==0) is a predicate event.  There are many other kinds 
of events too: interactions with the user (mouse, keyboard, etc.), ethernet 
messages, robot sensors, and so on.  They can all be captured within this same 
framework. 
Non-Causality 
 
It is far too easy when modeling the real world to assume that everything is 
causal, which leads one to treat most objects as black boxes that receive input 
at one end, and produce output at the other.  But in fact, it is sometime more 
natural to connect objects together in a non-causal manner, with bi-directional 
connections rather than unidirectional.  When done in this way, properties of the 
connections themselves contribute to the overall system behavior.  Two black 
boxes with ports a and b could be connected with a declaration such as: 
 

connect (box1.a, box2.b) 
 
This style of programming is reminiscent of logic programming, where logical 
variables play the role of both input and output.  But here, the intent is that 
connect itself is a user-defined connection that specifies the overall behavior of 
the system. 
 
 
Real-Time 
 
I’ve talked about time, and I’ve talked about the real world, but I have not yet 
talked about real-time behavior.  Real-time programming is perhaps one of the 
most difficult domains in which to work, and is also one of the most important.  
Many life-critical systems depend intimately on proper real-time behavior.  As 
with the concepts discussed above, I believe that we need a more declarative 
approach to dealing with real-time and, in general, resource-bounded 
computation.  This can be achieved in one of two ways: either implicitly, through 
a restricted language for which resource bounds can be guaranteed, or 
explicitly through a design whereby the user specifies resource constraints and 
(either manually or automatically) constructs a program guaranteed to meet 
those constraints. 
 
 
Conclusions 
 
Not surprisingly in a white paper such as this, my research group has been 
working on programming language abstractions along the lines of what has 
been described herein (see some references below).  For example, we have 
been very successful in designing languages that capture time and reactivity, 
and have successfully applied those languages in the areas of animation, 
robotics, and general control.  However, we don’t nearly have all the answers.  
There are many open problems such as performance issues, interactions 
between large numbers of objects, and so on.  We have just recently made 



some progress on real-time behavior, but have only just started thinking about 
non-causal behavior.  I have tried to suggest avenues for exploration that will 
yield answers different from the ones that we currently have, and to ask 
questions that we have not previously raised.   What ties all of these ideas 
together is the emphasis on creating abstractions of the real world since, after 
all, it is within that world that our programs run and with which they interact. 
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